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ABSTRACT

Large-scale chaotic stirring stretches tracer contours into filaments containing fine spatial scales until small-

scale diffusive processes dissipate tracer variance. Quantification of tracer transport in such circumstances is

possible through the use of Nakamura’s ‘‘effective diffusivity’’ diagnostics, which make clear the controlling

role of stirring, rather than small-scale dissipation, in large-scale transport. Existing theory of effective dif-

fusivity is based on a layerwise approach, in which tracer variance is presumed to cascade via horizontal (or

isentropic) stirring to small-scale horizontal (or isentropic) diffusion. In most geophysical flows of interest,

however, baroclinic shear will tilt stirred filamentary structures into almost-horizontal sheets, in which case

the thinnest dimension is vertical; accordingly, it will be vertical (or diabatic) diffusion that provides the

ultimate dissipation of variance. Here new theoretical developments define effective diffusivity in such flows.

In the frequently relevant case of isentropic stirring, it is shown that the theory is, in most respects, unchanged

from the case of isentropic diffusion: effective isentropic diffusivity is controlled by the isentropic stirring and,

it is argued, largely independent of the nature of the ultimate dissipation.Diabatic diffusion is not amplified by

the stirring, although it can be modestly enhanced through eddy modulation of static stability. These char-

acteristics are illustrated in numerical simulations of a stratospheric flow; in regions of strong stirring, the

theoretical predictions are well supported, but agreement is less good where stirring is weaker.

1. Introduction

Transport of tracers in large-scale atmospheric and

oceanic flows is often described as a two-dimensional

process, in which, through chaotic stirring, tracer vari-

ance cascades down to small scales at which diffusion—

whether via molecular or small-scale turbulent processes—

takes effect. A particularly clear and useful quantitative

description of transport in a given two-dimensional flow

was given by Nakamura (1996, hereafter N96, 1998,

hereafterN98) [and also byWinters andD’Asaro (1996)],

who showed that, in a two-dimensional cascade to ulti-

mate two-dimensional diffusivity k, net transport is dif-

fusive with an ‘‘effective diffusivity’’Keff5 ak, wherea is

proportional to the square of the ratio of the ‘‘equivalent

length’’ of tracer contours to their reference (un-

stretched) length. Under chaotic advection, tracer con-

tours are stretched by the strain in the flow and a

becomes large. The arrest of the variance cascade occurs

at the ‘‘Batchelor scale’’ b;
ffiffiffiffiffiffiffiffi
k/L

p
, when thinning of

tracer filaments by the large-scale strainL is balanced by

small-scale diffusion. For sufficiently small b, one ex-

pects the length of tracer contours to be proportional

to b21 (so as to preserve area) and hence the equivalent

length to vary as k21/2. Then,Keff becomes independent

of k and transport is controlled by large-scale stirring

rather than by small-scale diffusion (Shuckburgh and

Haynes 2003; Marshall et al. 2006). Application of this

theory to modeled and observed atmospheric flows has

been discussed byNakamura andMa (1997), Haynes and

Shuckburgh (2000a), Haynes and Shuckburgh (2000a,b),

Allen and Nakamura (2001), and Kostrykin and Schmitz

(2006) and to oceanic flows by Marshall et al. (2006),

Cerovecki et al. (2009), and Abernathy et al. (2010).

In almost all circumstances, however, the underlying

framework of these calculations is not a realistic repre-

sentation of the termination of the cascade in large-scale

atmospheric and oceanic flows. While such flows are
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indeed almost two-dimensional (in the sense of being

quasi horizontal or quasi isentropic) they are usually

also baroclinic. As the isentropic strain effects a cascade

of tracer variance to small horizontal scales, the vertical

shear tilts such features in the tracer field (see Fig. 2)

such that the expected ratio of vertical to horizontal

scales, in balanced flow, scales as the Prandtl ratio f/N,

the ratio of the Coriolis parameter to the buoyancy

frequency (e.g., Haynes and Anglade 1997). In the at-

mosphere, and in the upper ocean, f/N is typically of

order 1022; vertical scales are therefore much smaller

than horizontal scales. Thus, what appear to be filaments

on an isentropic cross section are more likely to be

vertically thin, quasi-horizontal layers. Figure 1 shows

an example of such a feature simulated by the atmo-

spheric model described in section 3a. The feature has a

much narrower vertical than horizontal extent, display-

ing a tilt approximately equal to the local value of the

Prandtl ratio (dashed line in Fig. 1).

The cascade produced by such large-scale quasi-

isentropic stirring is typically arrested by small-scale

diffusion that is more isotropic than the large-scale flow.

Whenever the ratio of diabatic to isentropic diffusivities

is greater than the square of the aspect ratio of fila-

mentary structures [i.e., (f/N)2], vertical (diabatic) dif-

fusion will dominate the dissipation of variance by

acting on the small vertical scales (as indicated in Fig. 2).

In this paper, we investigate the implications of this fact

for our theories of large-scale transport. It is argued that

for a given large-scale flow the horizontal (isentropic)

effective diffusivity will be independent of whether k

acts horizontally or vertically.

A related, and equally important, question is whether

the effects of large-scale stirring and tilting enhance

transport across, as well as within, isentropic surfaces.

Figure 2 might suggest that diabatic transport is en-

hanced by the generation of small vertical scales. Given

the potential importance of even a modest augmenta-

tion of the effects of small-scale diabatic transport in

stably stratified environments like the stratosphere or

the ocean, where diabatic transport is otherwise weak,

the question is an important one.

Theoretical developments, including the derivation of

an expression for the net isentropic transport (based

on the formalism of Nakamura, but with some minor

modifications) for the case in which the cascade of tracer

variance is arrested by isotropic diffusion, are presented

in section 2. The predictions of this theory are illustrated

by results from explicit numerical simulations of tracer

transport in a modeled stratosphere in section 3. We

FIG. 1. (left) Tracer distribution on 700-K surface and (right) cross section along 1808 from a simulation conducted

with T85 horizontal resolution and 100 vertical levels. The dashed line represents the theoretical slope of the tilted

filament, the local value of the Prandtl ratio, while the solid line represents the 700-K isentrope. The tracer simulation

is discussed in section 3.

FIG. 2. Illustration of the tilting of narrow filaments to generate

small vertical scales. The broad arrows indicate baroclinic shear;

the thin arrows depict diabatic tracer diffusion out of the filament.
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conclude in section 4 by discussing the general applica-

bility of our results and their implications for the nu-

merical representation of tracer transport.

2. Theory

We begin by considering a tracer q, governed by the

advection–diffusion equation

›q

›t
1 uh � $q1 _u

›q

›u
5 _q , (1)

where _q represents the diffusion that ultimately dissipates

tracer variance at small scales. N96 and N98 considered

the case where this diffusion occurs isentropically:

_q5$h(ki$hq) . (2)

Here $h denotes the components of the gradient oper-

ator within the u surface and ki is the isentropic diffu-

sivity. Our focus here is on cases where the ultimate

dissipation of variance is dominated by diabatic diffu-

sion, represented by

_q5
1

s

›

›u

�
kdsj$uj2

›q

›u

�
5

1

s

›

›u

�
kdsu

2
z

›q

›u

�
, (3)

where kd is the diabatic diffusivity expressed in height

coordinates, s 52g21›p/›u is the u-coordinate density,

and the shallow atmosphere approximation allows j$uj2 ’
u2z. The term s itself satisfies the continuity equation

›s

›t
1$h � (suh)1

›

›u
(s _u)5 0. (4)

Our analysis mostly follows the modified Lagrangian

mean (MLM) approach of N96 and N98, though with

some minor notational changes and a somewhat dif-

ferent coordinate system, which makes the form of the

MLM tracer budget a little more familiar. The MLM is

defined along contours of constant q 5 Q and on a sur-

face of constant u 5 Q; N98 then relabels the Q co-

ordinate as an equivalent area coordinate Ae (defined

below), expressing the final budget in (Ae, Q) coor-

dinates. We make a further trivial step, replacing the

area coordinate with a linear variable Y, and relabeling

the Q coordinate with the mean height Z of the u 5 Q
surface.

Following N98, we consider density-weighted in-

tegrals over the area enclosed on a surface of constant

u 5 Q by a contour q(x, y, u) 5 Q. For definiteness, we

shall assume that the contour surrounds a maximum of

q, although the end result is independent of this assump-

tion. Defining the mass integral of any quantity X as

MfXg5
ðð

q.Q
sX dA , (5)

the integrated mass per unit Q is

M(Q,Q, t)5Mf1g5
ðð

q.Q
s dA . (6)

Further, the modified Lagrangian mean—the density-

weightedmean around the contour—is defined, following

N96 and N98, as

hXi5 ›

›Q
(MfXg)

�
›M

›Q

�21

5

þ
sX

dl

j$hqj
�þ

s
dl

j$hqj
�21

.

(7)

Then, again following N98, we apply the operator (5) to

(4) to obtain

›M

›t
1

›

›Q
[Mf _qg]1 ›

›Q
[Mf _ug]5 0. (8)

Now, we change independent variables from (Q,Q) to

(Y, Z). Here Y is a latitude-like coordinate, constant

along a contour of constant (Q, Q), defined as follows.

First, we follow N98 in defining an ‘‘equivalent area’’Ae

within a (Q, Q) contour such that M(Q, Q) 5 S(Q)Ae,

where S(Q) is a representative isentropic density (for

our purposes, we define it to be the hemispheric average

of s on each Q surface). Then, we associate equivalent

area with a linear coordinateY such that dAe5L(Y)dY,

where dY 5 adfe, fe is the ‘‘equivalent latitude’’

(Butchart and Remsberg 1986), the latitude circle con-

taining an area equal to Ae,

fe 5 6sin21

�
12

Ae

2pa2

�
, (9)

and

L(Y)572pa cosfe (10)

is the circumference of the latitude circle. The choice

of sign depends on the hemisphere of interest. For our

purposes, we define area to be that south of the re-

spective Q contour, and so we choose the negative

sign in (9) and correspondingly the positive sign in

(10). We additionally define the height coordinate

Z(Q) to be the mean (log pressure) height of the u 5
Q surface.

It is a straightforward matter (details are given in

appendix B) to show that (8) leads to the following

advection–diffusion equation in (Y, Z) coordinates:
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›Q

›t
1V

›Q

›Y
1W

›Q

›Z
5 r21$(rK$Q) , (11)

where $[ (›/›Y, ›/›Z), the nondivergent advecting di-

abatic mean velocity is

V5 (V,W)5
1

r

�
2

›

›Z
,
›

›Y

�
Mf _ug (12)

similar toN98, r is themass density in (Y,Z) coordinates

(defined in appendix A), and the effective diffusivity

tensor is

K5

�
KYY KYZ

KZY KZZ

�
. (13)

For the case of ultimate isentropic diffusion [see (2)],

KYZ 5 KZY 5 KZZ 5 0 and

KYY 5 hkij$hqj2i
�
›Q

›Y

�22

(14)

as described by N96 and N98. With diabatic diffusion

[see (3)], however, it is shown in appendix B that the

effective diffusivity components are1

KYY 5 hkdu2zq02u i
�
›Q

›Y

�22

5 hkdq02z i
�
›Q

›Y

�22

,

KYZ 5KZY 5 hkdu2zq0ui
�
›Q

›Y

dQ

dZ

�21

,

KZZ 5 hkdu2zi
�
dQ

dZ

�22

, (15)

where

q0u[
›q

›u
2

›Q

›Q
(16)

and q0z 5 uzq
0
u. Note that q0u is not strictly an eddy term,

as there is in general no guarantee that hq0ui5 0; how-

ever, this quantity does in fact vanish if s does not vary

on isentropes, as shown in appendix C.

The usefulness and general applicability of expres-

sions like (14) and (15) for diffusivity rely on their in-

dependence of the details of each tracer. At first sight,

the fact that (14) andKYY andKYZ in (15) involve tracer

gradients and the small-scale diffusivities might suggest

otherwise. However, note that in each case the diffu-

sivities depend on ratios of the ‘‘eddy’’ tracer gradients

to the large-scale isentropic gradients. The former are

generated by kinematic folding and tilting of the latter,

suggesting that for sufficiently small diffusivity the ef-

fective diffusivities are characteristics of the large-scale

flow, independent of tracer details. For Nakamura’s is-

entropic diffusivity [see (14)], these issues have been

discussed byN96 and, in some detail, by Shuckburgh and

Haynes (2003) and Marshall et al. (2006). For suffi-

ciently large Peclet number, Pe 5 L/(kiL0), where L is

the rate of stretching by the large-scale flow and L0

a typical length scale of the flow, the cascade of tracer

variance is halted at b;
ffiffiffiffiffiffiffiffiffi
ki/L

p � L0; in this limit, the

effective diffusivity KYY becomes independent of the

small-scale diffusivity, and in fact scales as LL2
0. Marshall

et al. (2006) found this limit to be reached when Pe* 20.

It is to be anticipated that similar arguments apply to

the case with diabatic small-scale diffusion. In fact if we

anticipate, following Haynes and Anglade (1997), the

vertical and horizontal scales in a mature cascade to be

in the Prandtl ratio such that (q0z)
2 ;N2hj$hq

0j2i/f 2, the
isentropic diffusivity becomes

KYY ’ hkdq02z i
�
›Q

›Y

�22

;

�
kd

N2

f 2
j$hqj2

��
›Q

›Y

�22

.

Then, the expression for effective isentropic diffusivity

KYY in the presence of ultimate vertical diffusion is

formally the same as that for ultimate isentropic diffu-

sion with an isentropic diffusivity ki 5 kdN
2/f 2. The same

arguments about insensitivity of KYY to ki then apply as

in the isentropic case, leading to the expectation that

KYY also becomes, in the weak diffusion limit, a measure

of large-scale stretching rates.Hence,wemight anticipate—

and we shall illustrate in model results analyzed in

section 3—that KYY becomes largely independent of

whether the ultimate dissipation of tracer variance is

diabatic or isentropic.

The off-diagonal components of the diffusivity tensor

indicate, if nonzero, that the principal axis of effective

diffusion does not coincide with the isentropes. One can

show that these components are in fact zero if there are

no variations of either uz or s within isentropic surfaces:

if variations in uz along a tracer contour can be ne-

glected, then hu2zq0ui5 hu2zihq0ui and, as already noted,

hq0ui5 0 under such circumstances. As will be shown in

the next section, while these off-diagonal terms are not

zero in our numerical simulations, they are small enough

to be of little practical consequence.

1 The definition of the various components is in fact nonunique:

one can manipulate the definitions of the components of K and of

the advecting velocityV in such a way as to leave the net transport

unchanged. (One example of this ambiguity is noted in section 3c.)

The definition set that we present here seems to be the simplest and

most logical choice.
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Note that the expression for vertical effective diffu-

sivity KZZ in (15) is unrelated to the isentropic stirring

and baroclinic tilting of tracer contours of the kind il-

lustrated in Fig. 2. Enhancement of diabatic diffusion

occurs only through the factor hu2zi/(dQ/dZ)2, which is

independent of the tracer structures, but rather ex-

presses the impact of modulations of isentropic thick-

ness by the eddies. Unlike the collapse of vertical scales

of the tracer variance, there are strong dynamical con-

straints such as potential vorticity conservation that

prevent the sustained collapse of isentropic thickness;

nevertheless, the possibility of some enhancement of

diabatic mixing in the presence of eddies is indicated by

(15) and will be discussed further in what follows.

3. Numerical simulation of KYY, KYZ, and KZZ

a. Atmospheric model

In this section, we illustrate the theoretical results of

section 2 with simulations of atmospheric tracer trans-

port in a simplified general circulation model. Our focus

is the stratosphere, building upon prior application of

the N98 framework to the middle atmosphere by Haynes

and Shuckburgh (2000a), Allen and Nakamura (2001),

and Kostrykin and Schmitz (2006). The model is similar

to that of Polvani andKushner (2002), consisting of a dry

pseudospectral dynamical core forced by the thermo-

dynamic and momentum parameterizations of Held and

Suarez (1994). The model integrates the primitive equa-

tions within a hybrid s–p vertical coordinate extending

from the surface to 0.006 hPa. The hybrid coordinate

follows Simmons and Burridge (1981). The s coordinate

transitions to the p coordinate between 300 and 100 hPa.

Pressure surfaces are distributed such that the number

of model layers roughly corresponds to height spacing in

the stratosphere. Simulations are conducted at the com-

binations of horizontal and vertical resolution listed in

Table 1. Vertical resolution in the stratosphere varies

from 0.8 km (100 levels) to 2.0 km (40 levels). Rayleigh

friction is applied below 700 hPa to represent surface

drag and above 0.5 hPa to crudely parameterize gravity

wave drag within the mesosphere. Temperatures are

linearly relaxed to zonal equilibrium profiles; equilib-

rium temperature profiles used here are similar to those

of Held and Suarez (1994) but contain asymmetry about

the equator to generate solstice conditions. A polar vor-

tex is formed within the winter hemisphere by imposing

a lapse rate in equilibrium temperature g of 4K km21

through the polar stratosphere (Polvani and Kushner

2002). A 1000-day spinup is conducted from a static, iso-

thermal initial condition for each resolution.

The model transports tracers horizontally using a

semi-Lagrangian advection scheme and vertically with

a finite-volume parabolic scheme. Mass conservation is

not assured by these schemes, but we enforce it by ap-

plying a global ‘‘mass fixer.’’ This correction scales the

tracer field after each advective time step in order to

retain a constant global tracer mass. Test simulations

conducted without the mass fixer reveal that its use does

not significantly affect our calculation of effective dif-

fusivity. Themodel’s tracer simulation has recently been

used to diagnose stratosphere–troposphere exchange

(Orbe and Polvani 2012) and the Brewer–Dobson cir-

culation (Gerber 2012).

Two tracers, each containing no source or sink, are

simulated in each model integration; small-scale diffu-

sion is applied purely isentropically to one tracer and

purely diabatically to the other. Both tracers thus ex-

perience the same large-scale stirring but differ in the

mechanism dissipating small-scale tracer variance. Ad-

ditional diffusion arises from the numerical advection

routines. We quantify numerical diffusion by calculating

the tendency of globally averaged tracer variance (Allen

and Nakamura 2001; Abernathy et al. 2010):

1

2

›q2

›t
52knumi j$qj22 knumy

�
›q

›z

�2

. (17)

Here, the overbar represents the global mass-weighted

mean (surface to top of atmosphere). We separately

regress the tendency of globally averaged tracer vari-

ance against j$qj2 and (›q/›z)2 since horizontal and

vertical numerical diffusion cannot be disentangled. As

a result, the estimates presented in Table 1 assume that

the destruction of tracer variance occurs solely through

horizontal or vertical numerical diffusion and are upper

limits. Horizontal and vertical numerical diffusion are

not strictly independent, but our method is conservative

enough to account for any interdependence. As might

be expected, the amount of numerical diffusion is greatest

for the coarsest simulations and decreases as resolution

improves.

TABLE 1. Simulations conducted in this study and estimates of

vertical and horizontal numerical diffusion. The column labeled

‘‘vertical’’ indicates resolution in model layers and vertical spacing

in the stratosphere.

Resolution

knumh (m2 s21) knumy (m2 s21)Horizontal Vertical

T42 (;2.88) 80 (1.0 km) 4.6 3 103 0.8

T63 (;1.98) 40 (2.0 km) 2.4 3 103 1.0

T63 (;1.98) 60 (1.5 km) 2.2 3 103 0.9

T63 (;1.98) 80 (1.0 km) 1.8 3 103 0.8

T63 (;1.98) 100 (0.8 km) 1.4 3 103 0.2

T85 (;1.48) 80 (1.0 km) 1.2 3 103 0.7

T85 (;1.48) 100 (0.8 km) 1.0 3 103 0.2
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An explicit diffusivity of ki 5 5.0 3 104m2 s21 is ap-

plied to the ‘‘isentropic’’ tracer and kd 5 1.25m2 s21 to

the ‘‘diabatic’’ tracer. These values are larger than our

estimates for numerical diffusion, although only mar-

ginally so for the diabatic tracer except in the simula-

tions containing 100 layers. Tracer concentrations are

initialized with q 5 jfj (ppb) for f , 0, where f is lat-

itude. Elsewhere, tracer concentrations are initialized

with a value of 0.01 ppb. There is no initial vertical

structure in the tracer fields. Each tracer simulation is

conducted for at least 100 days. The first 30 days of the

tracer simulation are discarded to ensure flow diagnos-

tics independent of the initial tracer field (Haynes and

Shuckburgh 2000a).

The stratospheric circulation generated in this model,

other factors being fixed, depends on the magnitude of

planetary-scale topography specified at the surface. For

example, wavenumber-2 topography of amplitude 3 km

generates large amplitude quasi-stationary Rossby waves

sufficient to produce intermittent major warming events

of realistic frequency and intensity (Gerber and Polvani

2009). Major warming events, however, are undesirable

in our study since such events cause our calculated ef-

fective diffusivity to become an average over two stir-

ring regimes: quiescent periods when stirring is mostly

confined to the midlatitude surf zone, and warming

events during which stirring extends across high lati-

tudes. Accordingly, we choose to focus our calculations

on a less disturbed regime by imposing a flat lower

boundary in the model. Planetary-scale Rossby waves

produced by synoptic wave interactions (Scinocca and

Haynes 1998) still appear in the stratosphere but are

weak enough that, at least with this model configuration,

only weak, minor, warming events are produced. This is

not particularly realistic as an analog of the northern

winter circulation but is qualitatively similar to the

behavior of the southern stratosphere in midwinter.

As we shall see, the relatively weak stirring in the

middle and upper stratosphere has some consequences

for the interpretation of effective diffusivity in the

results.

b. Calculation of effective diffusivity

Effective diffusivity (KYY, KYZ, KZZ) is calculated

using (14) and (15) and daily instantaneous tracer fields.

Tracer concentrations are linearly interpolated onto is-

entropic surfaces extending from 400 to 1500K with

15-K resolution, defining the Q coordinate. The Q co-

ordinate is also expressed as the hemispheric-mean log-

pressure height Z of each surface. For each isentropic

surface, 250 evenly spaced Q-contour levels are created

between the minimum and maximum tracer concentra-

tions. Each Q contour is mapped onto the horizontal

coordinate Y through the contour equivalent area as

outlined in section 2. We find that our calculations are

not particularly sensitive to the number of tracer con-

tours or isentropic levels used.

The calculation of effective diffusivity is the product

of two components: the MLM of the local tracer or u

gradient, and the inverse square of the large-scale gradi-

ent of tracer (›Q/›Y) or potential temperature (›Q/›Z).

The latter component of the effective diffusivity is a

straightforward calculation using finite differences of the

mapping of Q / Y and Q / Z.

The MLM of a generalized property j is calculated as

follows. First, a mass-weighted (sA, where A is the

gridbox area) summation of j is conducted within each

contour Q. A summation of the contour mass is also

performed. The MLM is calculated as the ratio of the

difference of the weighted summation of j across Q

contours to the change in mass within the contours. That

is, for gridded j,

hji(Q,Q)5

�
q.Q1dQ

j(i, j,Q)s(i, j,Q)A(i, j)2 �
q.Q2dQ

j(i, j,Q)s(i, j,Q)A(i, j)

�
q.Q1dQ

s(i, j,Q)A(i, j)2 �
q.Q2dQ

s(i, j,Q)A(i, j)
, (18)

where i and j are the horizontal gridbox indices within

the appropriateQ contour. Equation (18) is a discretized

version of (7). To apply (18) to (15), the horizontal and

vertical gradients of q are calculated for each grid point

and daily tracer field. Equation (18) is additionally used

to calculate the MLM of the zonal wind.

The key expressions in the first and second of the defi-

nitions in (15) forKYY andKYZ canbewritten, using (16), as

*�
›u

›z

�2

(q0u)
2

+
(Q,Q)5

*�
›q

›z
2

›u

›z

›Q

›Q

�2
+

and

*�
›u

›z

�2

q0u

+
(Q,Q)5

�
›u

›z

�
›q

›z
2

›u

›z

›Q

›Q

��
,

with z denoting the local log-pressure height.
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c. Numerical modeling results

The left panel of Fig. 3 shows KYY,i, the isentropic

diffusivity calculated using (14) and the tracer modeled

with isentropic diffusion, along with the MLM of the

zonal wind from the simulation with the finest hori-

zontal (T85,;155km) and vertical (100 levels,;0.8 km)

spatial resolutions. The distribution of KYY,i is simi-

lar to prior estimates for austral winter (Haynes and

Shuckburgh 2000a; Allen and Nakamura 2001), but the

absolutemagnitude is lower in our idealized atmosphere

owing to the smaller amount of wave forcing from the

imposed flat topography. Small values ofKYY,i are found

in the tropics and vortex edge, the so-called transport

barriers. Tracer contours generally have simpler geom-

etry in these regions with correspondingly small values

of effective diffusivity. Values in these regions approach

the imposed small-scale diffusivity ki (0.5 3 105m2 s21).

Above the lower stratosphere, the largest values ofKYY,i

are located equatorward of the polar vortex, where

mixing is strong and tracer contours are filamented

within the midlatitude surf zone (see Fig. 1). In fact, the

largest values of KYY,i are neatly confined between the

vortex and the zero zonal wind line. In this region,KYY,i

is up to 25 times larger than ki, indicating significant

contour stretching and large equivalent lengths. Higher

values of KYY,i are evident in a broad latitudinal region

of the lower stratosphere where stronger stirring is as-

sociated with the upper extensions of synoptic-scale

tropospheric eddies.

The right panel of Fig. 3 shows KYY,d, the isentropic

effective diffusivity calculated using (15), and the tracer

with imposed diabatic diffusion. The large-scale struc-

ture ofKYY,d is similar to that ofKYY,I; that is, values are

largest in the surf zone and lower stratosphere. Within

the surf zone, the spatial pattern of KYY,d corresponds

well with the features of KYY,i, including local maxima

at 475 and 800K, a broad structure between 600 and

1100K, and a minimum value at 1300K. Despite the

similarities in spatial structure, however, KYY,d and

KYY,i differ in magnitude. Figure 4 shows their ratio,

KYY,d/KYY,i. In line with the theoretical arguments, the

ratio is close to unity in the lower stratosphere, below

550K where stirring is strongest. Elsewhere, KYY,d is

generally at least a factor of 2 smaller than KYY,i within

the surf zone and much smaller in the transport barriers.

This suggests that the conditions in the regions of weaker

stirring have not reached those assumed in the theoret-

ical discussion. Sensitivity simulations with differing

values of ki reveal that KYY,i is not entirely independent

FIG. 3. Effective diffusivityKYY (3105m2 s21) calculated from a simulation dissipating tracer variance with explicit

(left) isentropic (KYY,i) or (right) diabatic (KYY,d) diffusion. Black contours represent the MLM of the zonal wind

(contour interval is 10m s21; negative values are dashed). Note the difference in color scale betweenKYY,i andKYY,d.

The simulation was performed with a horizontal resolution of T85 and 100 vertical levels.

FIG. 4. Ratio of KYY,d to KYY,i from the simulation presented in

Fig. 3. Blues (reds) indicate thatKYY,d is lower (higher) thanKYY,i.

Dashed lines indicate KYY,i of the control simulation.
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of the applied small-scale diffusion, with the largest sen-

sitivity to ki occurring in the weakly stirred transport

barriers and surf zone above 1200K. This further high-

lights discrepancies between theory and weakly stirred

regions.

In the strongly stirred lower stratosphere, f/N scaling

is produced as filamentary structures are rapidly stretched

and tilted. It is here thatKYY,d is most similar toKYY,i. In

contrast, the largest discrepancies between KYY,i and

KYY,d occur in regions experiencing weakest stirring

(i.e., the transport barriers). In these locationsQ contours

have simple geometry and j$hqj2 ; (›Q/›Y)2, so that

KYY,i; ki. However, since there are no finescale filaments

to be tilted, the vertical-scale collapse is weak so thatKYY,d

is much smaller than KYY,i. In this situation, diabatic

diffusion does not participate in the dissipation of isentro-

pically driven cascade of tracer variance. As a result, weak

diabatic diffusion does not have much impact on tracer

transport in regions experiencing little wave activity.

Two additional factors complicate the comparison of

KYY,i and KYY,d: the intermittency of wave activity and

the proximity of filaments to the vortex edge. Wave

activity is not continuous and thus effective diffusivity is

not constant through time. As such, the values presented

in Fig. 3 represent average conditions and do not nec-

essarily retain f/N scaling. Also, filaments are commonly

formed by stripping tracer away from the polar vortex

edge. In this situation, a portion of the length of tracer

contours lies along the vortex edge, a location with large

horizontal tracer gradients, but not necessarily large

vertical gradients. The calculation of effective diffusivity

along such a contour is thus partially biased by processes

not governed by f/N scaling. These complications are

overcome in the lower stratosphere, where the effects of

a strong vortex are lacking and wave activity is stronger

and much more frequent.

Note the relatively large values of KYY,d within the

polar vortex, which are especially evident in the ratio

KYY,d/KYY,i shown in Fig. 3. These are indicative not of

the stretching–tilting processes of the surf zone, but

rather of the impact of small values of q0u in the presence

of the small values of (›Q/›Y) in the calculation of

KYY,d. Such values are inevitable near the pole where

the mean gradient vanishes. As such, these large values

ofKYY,d exemplify the ambiguities in the representation

of K noted earlier. Even in the absence of zonal asym-

metries, a vertical diffusive flux

F52kz
›q

›z
ẑ ,

where ẑ is the upward unit vector, can be written, iden-

tically, as the sum of a component along the q contours

(which is therefore advective in nature) and a horizontal

component

F5 kz

�
›q/›z

›q/›y

�
x̂3$q2 kz

�
›q/›z

›q/›y

�2›q

›y
ŷ , (19)

where x̂ and ŷ are, respectively, unit vectors in the x and

y directions. Thus, a vertical diffusion can be repre-

sented by the sum of an advective flux plus horizontal

diffusion. That this is not generally a sensible thing to do

is evidenced by the fact that the transfer coefficients in

(19) are dependent on the geometry of the tracer iso-

pleths. Provided the isopleth slopes are dictated by the

large-scale flow—as they will be in a region of strong

stirring—the effective diffusivity is meaningful. This is

not the case in the weakly stirred vortex interior, and so

the relatively large polar values ofKYY,d are misleading.

However, given the small absolute values of KYY within

the vortex, the point is moot.

Estimates of KYY are sensitive to the resolution of

tracer advection: as resolution improves, finer-scale

features are resolved and the contour equivalent length

increases (Allen and Nakamura 2001). If the discrep-

ancies between KYY,i and KYY,d are due to inadequate

resolution of the tracer cascade, one would expect the

values to show convergence as resolution is improved.

Note that changes in resolution in these calculations

apply to the dynamical fields as well as to the tracers;

that is, the dynamical simulations change somewhat

as resolution is changed (although changes in the flow

statistics aremodest). Thus, unlike some previous studies,

the sensitivity to resolution discussed here is not simply

a matter of changing the resolution of tracer transport in

a given flow.

The left panels of Fig. 5 show KYY,i at 850 and 450K

for the resolutions listed in Table 1. To ensure mean-

ingful comparisons, KYY,i is averaged over periods (typ-

ically 30 days) containing an active surf zone (KYY,i is

large). While KYY,i increases with horizontal resolution,

it is not as sensitive to improved vertical resolution

(dashed lines in Fig. 5). This sensitivity is largest in the

surf zone where stirring is modestly vigorous and the

representation of filamentary structures benefits from

enhanced resolution (Haynes and Shuckburgh 2000a;

Allen and Nakamura 2001). The right panels of Fig. 5

show the effect of resolution on the diagnosed value of

KYY,d. Similar to KYY,i, higher resolution increases the

estimate of KYY,d; not surprisingly, in this case the

greater sensitivity is to vertical resolution with a large

increase between 60 levels (1.5 km) and 80 levels (1.0 km)

at 850K and between 80 and 100 levels at 450K, where

the length scales are smaller. Agreement between KYY,i

and KYY,d improves with increased resolution; at the
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highest resolutions used here, agreement is good at 450K,

but at 850K the discrepancies, though smaller than at

lower resolution, remain substantial.

Figure 6 showsKYZ andKZZ calculated from the same

simulation presented in Fig. 3. The left panel of Fig. 6

shows KYZ, the off-diagonal component of the effective

diffusion tensor in (15). UnlikeKYY,KYZ has mixed sign

throughout the stratosphere. The largest values of up to

80m2 s21 occur in the lower stratosphere; in the middle

and upper stratosphere, typical values are around

10m2 s21. As mentioned in section 2, theory suggests

KYZ to be negligible if variations in s are small within an

isentropic surface and, indeed, these values are small.

The role of the off-diagonal components is to rotate the

principal axes of diffusion through an angle ofKYZ/KYY;
1025, which corresponds to a slope of the principal dif-

fusion axis relative to isentropes of about 100m between

equator and pole, which can undoubtedly be regarded as

negligible (isentropic surfaces themselves slope by fac-

tors of 10–100 more than this.)

The right panel of Fig. 6 shows thatKZZ’ kd throughout

most of the stratosphere, indicating that the enhance-

ment of tracer diffusion due tomodulations of isentropic

thickness by the eddies is minimal in those places.

Within the polar vortex, KZZ is amplified by a factor of

up to 5, but this amplification appears not to be primarily

the result of eddy effects. Rather, KZZ is artificially en-

hanced as a consequence of using the hemispheric mean

height. Isentropic thickness is smaller within the polar

vortex than elsewhere, making ›u/›z . ›Q/›z. As a re-

sult, KZZ is amplified there owing to our choice of co-

ordinate system rather than a physical process. Where

the eddies are stronger, diabatic diffusivity is not sub-

stantially enhanced; thus it appears that the presence of

eddies does not significantly enhance diabatic mixing in

these simulations.

FIG. 5. Effective diffusivity (3105m2 s21) (left) KYY,i and (right) KYY,d on the (top) 850- and (bottom) 450-K

isentropic surfaces as calculated from simulations with spatial resolutions: T42, 40 levels (black); T63, 60 levels (red

solid); T63, 100 levels (red dashed); T85, 80 levels (blue solid); and T85, 100 levels (blue dashed). Note the difference

in scale between KYY,i and KYY,d at 850K.
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The final component of transport is mean advection.

The advecting velocity that appears in (11) and in N98

has MLM mass streamfunction

M(Y,Z, t)f _ug5
ðð

s _udA , (20)

where the integral is over the area poleward of the ap-

propriate equivalent latitude contour (of constant Q).

This is not the same as the conventional zonal-mean

diabatic circulation, which has mass streamfunction

also given by (20) but for which the integral is over the

area poleward of a circle of constant latitude. The two

streamfunctions are compared in Fig. 7. In magnitude

and in general shape, the two are similar, although the

MLM streamfunction is flatter in the surf zone (with

little upwelling or downwelling between 208 and 508
equivalent latitude) and the MLM high-latitude descent

closely follows the vortex edge, including the equator-

ward kink in the edge near 500K (cf. the MLM wind

maximum in Fig. 3).

4. Discussion

We have expanded the effective diffusivity diagnostic

of N96 and N98 by deriving the equations in the pres-

ence of diabatic diffusion. Our derivation produces a

solution [see (11)] similar to that of N98, but with the

isentropic effective diffusivity (denoted KYY) replaced

by an effective diffusivity tensorK that includes not only

the isentropic component of effective diffusivity but

additionally consists of vertical (KZZ) and off-diagonal

components (KYZ). Our numerical simulations confirm

the theoretical expectation that KYZ is small enough to

be negligible, while KZZ differs little from the imposed

diabatic diffusivity kd; thus, diabatic diffusion is not

FIG. 6. Effective diffusivity components (left) KYZ (m2 s21) and (right) KZZ (m2 s21) calculated from a simulation

dissipating tracer variance with explicit diabatic diffusion k. Black contours represent the MLM of the zonal wind

(contour interval is 10m s21; negative values are dashed). Note the nonlinear color scale of KYZ.

FIG. 7. Mass streamfunctions (108 kg s21) calculated relative to (left) tracer contours (i.e., equivalent latitude) and

(right) latitude circles.
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significantly modified by large-scale stirring. The first

key statement to be concluded from this analysis is that

large-scale tracer transport, summarized in KYY, is pre-

dominantly isentropic and a property of large-scale

stirring; it is largely independent of the direction of

dissipation (isentropic or diabatic). In practice, resolu-

tion limitations, and our choice of flow regime, rendered

our simulations capable of confirming insensitivity to

the nature of small-scale dissipation only in regions (the

lower stratosphere) where eddy stirring is sufficiently

strong.

The second key statement is that, despite consider-

ations raised in the introduction in the context of Fig. 2,

the tilting of stretching filaments by the baroclinic shear

does not lead to augmented diabatic transport. The only

impact of the eddymotions on diabatic diffusivity occurs

through modulation of isentropic thickness. This could

be important in situations where eddies strongly mod-

ulate static stability, and where modest augmentation of

diabatic diffusion could be important. Note, however,

that the discussions here are based on a constant small-

scale diabatic diffusivity; if this is a turbulent process,

small-scale mixing could be suppressed where static sta-

bility is locally increased, in which caseKZZmay be even

less sensitive to eddy effects.

Our numerical simulations have focused on tracer

transport in the atmosphere, but the theoretical devel-

opments are general and can be applied to all baroclinic

geophysical flows large enough to be balanced. For ex-

ample, oceanic tracers are also stretched into tilted fil-

aments containing a mean aspect ratio of f/N. Smith and

Ferrari (2009) simulated the cascade of thermohaline

variance in a quasigeostrophic model and, similar to this

work, showed that isotropic diffusive processes acting

upon small vertical scales are sufficient to halt the lat-

erally driven cascade of tracer variance, thus supporting

the conclusions drawn here and highlighting the impor-

tance of compact vertical scales in the atmosphere and

ocean.

Many dynamical models have been constructed with

the assumption of horizontal dissipation of tracer vari-

ance. While our results indicate that these models have

not correctly simulated the physical processes termi-

nating the variance cascade, the equivalence of properly

scaled isentropic or diabatic diffusion suggests that the

error is not particularly egregious. Indeed, as long as a

model includes appropriate horizontal processes, the

termination of the cascade can be properly simulated

with grossly inadequate vertical resolution. However,

vertical processes cannot be neglected in models con-

taining both isentropic anddiabatic diffusion. Even though

quasi-horizontal strain drives the cascade of tracer

variance, adequate vertical resolution is necessary to

appropriately represent the ultimate termination of

the cascade.
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APPENDIX A

The Advective Terms

Given M(Q, Q, t) 5 S(Q)Ae(Q, Q, t) and (›Ae/›Y)Q 5
L(Y), we have dMjQ5 SdAe 5 SLdY, and

›

›Q

����
Q

5

�
›Q

›Y

�21

Z

›

›Y

�����
z

, (A1)

›

›Q

����
Q

5
dZ

dQ

�
›

›Z

����
Y

2
›Q/›Z
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›

›Y

����
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�
. (A2)

Now,

�
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�
Q,Q
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�
Q

�
›Q

›t

�
Y ,Q

52SL

�
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Q
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�
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Hence (8) becomes
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�
Y
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�
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�21
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›
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›
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›
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from (7). But, using (A2),

dQ

dZ
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›
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Then (A3) becomes
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›t

�
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5 h _qi2V
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�
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�
Y

, (A4)
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where the nondivergent advecting velocity is

V5 (V,W)5

�
2r21 ›

›Z
Mf _ug, r21 ›

›Y
Mf _ug

�
,

where

r5 SL
dQ

dZ
5

›M

›Y

dQ

dZ
(A5)

is the mass density in (Y, Z) space.

APPENDIX B

The Diabatic Diffusion Term

From (7),

�
›M

›Q

�
Q
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›Q
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›
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Now, using the identity
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we have
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Map this into (Y, Z) space using (A1) and (A2), which, after some manipulation, gives
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Now write ›q/›u5 ›Q/›Q1 q0u. Then
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Together, and noting that j$uj ’ uz, (A4) and (B3) lead

directly to (11).

APPENDIX C

Proof That hq0ui5 0 When s 5 s(u)

If s is constant within the isentropic surface, we can

write s 5 S(Q) and so, using (6),

SAe 5M5

ðð
s dA5 S

ðð
dA .

But, from (B1),
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and hence
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