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Abstract. We use a global chemical transport model (GEOS-
Chem CTM) to interpret observations of black carbon (BC)
and organic aerosol (OA) from the NASA ARCTAS aircraft
campaign over the North American Arctic in April 2008, as
well as longer-term records in surface air and in snow (2007–
2009). BC emission inventories for North America, Europe,
and Asia in the model are tested by comparison with surface
air observations over these source regions. Russian open fires
were the dominant source of OA in the Arctic troposphere
during ARCTAS but we find that BC was of prevailingly an-
thropogenic (fossil fuel and biofuel) origin, particularly in
surface air. This source attribution is confirmed by correla-
tion of BC and OA with acetonitrile and sulfate in the model
and in the observations. Asian emissions are the main anthro-
pogenic source of BC in the free troposphere but European,
Russian and North American sources are also important in
surface air. Russian anthropogenic emissions appear to dom-
inate the source of BC in Arctic surface air in winter. Model
simulations for 2007–2009 (to account for interannual vari-
ability of fires) show much higher BC snow content in the
Eurasian than the North American Arctic, consistent with
the limited observations. We find that anthropogenic sources
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contribute 90 % of BC deposited to Arctic snow in January-
March and 60 % in April–May 2007–2009. The mean de-
crease in Arctic snow albedo from BC deposition is estimated
to be 0.6 % in spring, resulting in a regional surface radiative
forcing consistent with previous estimates.

1 Introduction

Aerosol pollution in the Arctic peaks in winter-spring, when
transport from mid-latitudes is most intense and removal
by deposition is slow (Barrie et al., 1981; Quinn et al.,
2002, 2007; Law and Stohl, 2007). The principal submicron
aerosol components are sulfate and organic aerosols (OA)
(Ricard et al., 2002; Zhang et al., 2007), which affect Arc-
tic climate by scattering solar radiation and modifying cloud
properties (Kristjansson et al., 2005; Koch et al., 2007; Quinn
et al., 2007, 2008). Black carbon (BC) is only a minor con-
tributor to aerosol mass but is of great climatic interest as an
absorber of solar radiation both in the atmosphere (Jacobson,
2001; Koch et al., 2007; Quinn et al., 2008) and after depo-
sition to snow (Warren and Wiscombe, 1985; Flanner et al.,
2007; McConnell et al., 2007; Quinn et al., 2008). Here we
use a global chemical transport model (GEOS-Chem CTM)
to interpret aircraft observations of BC and OA from the
NASA ARCTAS campaign over the North American Arctic
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in April 2008 (Jacob et al., 2010), as well as longer-term
records of BC observations at surface sites and in snow. Our
goal is to better understand the factors controlling the con-
centrations of carbonaceous aerosols in the Arctic, the depo-
sition of BC to snow, and the implications for snow albedo
and associated radiative forcing.

Observations of elevated BC at Arctic surface sites have
been reported since the early 1980s (Rosen et al., 1981;
Schnell, 1984; Hansen et al., 1989). The early observations
were attributed to fossil fuel combustion in northern Europe
and Russia, based on air flow back-trajectories and corre-
lations with trace metal tracers (Shaw, 1982; Djupstrom et
al., 1993). BC concentrations in the Arctic decreased from
the 1980s to 2000, followed by a slight increase in the past
decade (Sharma et al., 2006; Eleftheriadis et al., 2009; Gong
et al., 2010; Hirdman et al., 2010). Recent measurements of
BC in Arctic snow show a strong association with biomass
burning based on tracer correlations and optical properties
(Hegg et al., 2009; Doherty et al., 2010; Hegg et al., 2010).
Stohl et al. (2007) reported an event of extremely high BC
concentrations in the Arctic in spring associated with agri-
cultural burning in Eastern Europe.

The origin of OA in the Arctic has received far less atten-
tion. A two-year record of OA concentrations in northern
Finland shows a minimum in winter and a maximum in sum-
mer attributed to biogenic and photochemical sources (Ri-
card et al., 2002). Measurements at Barrow show maximum
OA in winter-spring, and correlations with chemical tracers
suggest a dominance of ocean emissions (winter) and com-
bustion sources (spring) (Shaw et al., 2010; Frossard et al.,
2011).

Surface measurements of aerosols are not representative of
the troposphere, particularly in the Arctic because of strong
stratification (Hansen and Rosen, 1984; Hansen and No-
vakov, 1989; Klonecki et al., 2003). The vertical distri-
bution of aerosols has important implications for radiative
forcing (Koch et al., 2009a). Two coordinated aircraft cam-
paigns with carbonaceous aerosol measurements were con-
ducted in April 2008 out of Fairbanks, Alaska: the NASA
Arctic Research of the Composition of the Troposphere from
Aircraft and Satellites (ARCTAS) (Jacob et al., 2010) and
the NOAA Aerosol, Radiation and Cloud Processes affect-
ing Arctic Climate (ARCPAC) (Brock et al., 2011). These
two campaigns were part of the international program Po-
lar Study using Aircraft, Remote Sensing, Surface Mea-
surements and Models, of Climate, Chemistry, Aerosols
and Transport (POLARCAT) (http://www.polarcat.no). They
provided extensive vertical profiling of trace gases and spe-
ciated aerosols through the depth of the Arctic troposphere.
They showed in particular large enhancements of carbona-
ceous aerosols in the mid-troposphere due to open fires in
Russia and Kazakhstan (Warneke et al., 2009; Spackman et
al., 2010; Warneke et al., 2010; Kondo et al., 2011; Matsui
et al., 2011; McNaughton et al., 2011). More recent airborne
measurements of BC in the Arctic were made in April 2009

during the PAM-ARCMIP campaign (Stone et al., 2010).
A number of CTM studies have investigated the sources

of BC in the Arctic, but there are large disagreements among
models and discrepancies with observations (Shindell et al.,
2008; Koch et al., 2009b; Tilmes et al., 2011). Emissions
in East Asia have grown rapidly in the past two decades and
some work has pointed out an impact on winter-spring Arctic
BC concentrations, especially in the free troposphere (Koch
and Hansen, 2005; Shindell et al., 2008; Tilmes et al., 2011).
However, Stohl (2006) found little wintertime Asian influ-
ence over the Arctic either at the surface or in the free tro-
posphere. Liu et al. (2011) pointed out that simulation of
transport of BC to the Arctic is highly sensitive to the model
representation of wet and dry deposition.

Attempts to model OA over the Arctic have been more lim-
ited. Open fires would be expected to be a dominant source
on an annual average basis (Koch et al., 2007). There is a
general tendency for models to underestimate observed OA
concentrations in the remote atmosphere (Heald et al., 2005,
2011), and this has been attributed to poor representation of
secondary organic aerosol (SOA) formation (Volkamer et al.,
2006; Hodzic et al., 2010; Heald et al., 2011).

We show here that the ensemble of ARCTAS and surface
observations provide important constraints on the sources
of BC and OA to the Arctic in winter-spring, and that the
GEOS-Chem model with improved representation of wet de-
position can successfully simulate these observations. Our
work builds on previous studies that applied GEOS-Chem
to simulate observations of other species over the Arc-
tic during ARCTAS/ARCPAC including CO (Fisher et al.,
2010), sulfate-ammonium aerosols (Fisher et al., 2011), HOx
radicals (Mao et al., 2010), and mercury (Holmes et al.,
2010). Fires were a dominant source of OA during ARC-
TAS/ARCPAC, but we show that anthropogenic (fossil fuel
and biofuel) sources were more important for BC, partic-
ularly near the surface. Anthropogenic BC was mainly of
Asian origin in the free troposphere but had comparable con-
tributions from Asia, Europe, North America and Russia near
the surface. Our results suggest that Russian anthropogenic
sources are a major source of Arctic BC in winter, and that
BC concentrations in Arctic air and snow are highest in the
Eurasian sector in both winter and spring.

2 Model description

We use the GEOS-Chem CTM version 8-01-04 (http://
geos-chem.org) driven by assimilated meteorological data
from the Goddard Earth Observing System (GEOS-5) of the
NASA Global Modeling and Assimilation Office (GMAO).
The GEOS-5 data have 6-hour temporal resolution (3-h for
surface quantities and mixing depths), 47 vertical layers, and
0.5◦

× 0.667◦ horizontal resolution. We degrade the hori-
zontal resolution to 2◦ × 2.5◦ for input to GEOS-Chem. We
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initialize the model with a one-month spin-up followed by
simulation of Jan–May 2008.

The simulation of carbonaceous aerosols in GEOS-Chem
is as described by Park et al. (2006) and Fu et al. (2009),
with modifications of wet deposition and emission invento-
ries described below. BC and primary OA (POA) are emitted
by combustion. SOA is produced in the atmosphere by re-
versible condensation of oxidation products of biogenic and
aromatic volatile organic compounds (Chung and Seinfeld,
2002; Henze and Seinfeld, 2006; Henze et al., 2008), as well
as by irreversible condensation of glyoxal and methylglyoxal
(Fu et al., 2008, 2009). We find that SOA formed by either
of these pathways is negligible in the winter-spring Arctic
and we do not discuss it further here. The simulations of BC
and POA in GEOS-Chem are linear (concentrations are pro-
portional to sources) and we isolate the contributions from
different sources by tagging them in the model.

Dry deposition in GEOS-Chem follows a standard
resistance-in-series scheme (Wesely, 1989) as implemented
by Wang et al. (1998), with deposition velocities calculated
locally using GEOS-5 data for surface values of momen-
tum and sensible heat fluxes, temperature, and solar radi-
ation. The global annual mean dry deposition velocity is
0.1 cm s−1 for BC and OA, typical of current models (Reddy
and Boucher, 2004; Huang et al., 2010). Over snow/ice the
Wesely (1989) parameterization yields a mean dry deposi-
tion velocity of 0.08 cm s−1. Fisher et al. (2011) previously
found that this leads to GEOS-Chem underestimate of sulfate
at Arctic surface sites, and we find the same for BC. Follow-
ing Fisher et al. (2011), we impose a constant aerosol dry
deposition velocity of 0.03 cm s−1 over snow and ice based
on eddy-covariance flux measurements in the Arctic by Nils-
son and Rannik (2001) and Held et al. (2011). With this as-
sumption and as discussed later, we find in the model that
dry deposition contributes only 15 % of total BC deposition
to the Arctc in winter and 9 % in spring. Similar BC dry
deposition velocities (0.01–0.07 cm s−1) over snow/ice were
adopted in Liu et al. (2011) to improve their BC simulation
over the Arctic in the AM-3 global model.

2.1 Wet deposition

Proper representation of scavenging by cold (ice) clouds and
snow is important for simulation of aerosols in the Arctic.
The standard scheme for aerosol scavenging in GEOS-Chem
described by Liu et al. (2001) includes scavenging in convec-
tive updrafts, as well as in-cloud and below-cloud scaveng-
ing from convective and large-scale precipitation. However,
it does not distinguish between rain and snow. Here we in-
troduce such a distinction as well as other improvements to
the scavenging scheme.

In the standard GEOS-Chem model, below-cloud scav-
enging (washout) of aerosol mass is calculated using a
washout rate constantk = aP , whereP is the precipita-
tion rate (mm h−1) anda = 0.1 mm−1 is a washout coeffi-

cient obtained by integrating scavenging efficiencies from
impaction, interception, and diffusion over typical raindrop
and aerosol size distributions (Dana and Hales, 1976). This
overestimates integrated scavenging during a precipitation
event because it does not account for the preferential re-
moval of coarse particles, shifting the aerosol size distri-
bution toward the more scavenging-resistant accumulation
mode (Feng, 2007; Croft et al., 2009; Feng, 2009). Here we
use a parameterizationk = aP b constructed by Feng (2007,
2009) for individual aerosol modes (nucleation, accumula-
tion, and coarse) and for snow as well as rain. We adopt their
accumulation-mode scavenging coefficients for all aerosols
except dust and sea salt, for which we adopt their coarse-
mode coefficients. The corresponding values for rain (T ≥

268 K) area = 1.1× 10−3 and b = 0.61 for accumulation-
mode aerosols, anda = 0.92 andb = 0.79 for coarse-mode
aerosols; for snow (T < 268 K), they area = 2.8×10−2 and
b = 0.96 for accumulation-mode aerosols, anda = 1.57 and
b = 0.96 for coarse-mode aerosols. HereP is in units of
mm h−1, k is in unit of h−1, and the units ofa depend on the
value ofb. Scavenging of accumulation-mode aerosols by
snow is 5–25 times more efficient than by rain forP in the
range 0.01–1 mm h−1 because of the larger cross sectional
area of snow crystals vs. rain drops (Murakami et al., 1983).
The difference increases asP increases.

In-cloud scavenging (rainout) efficiently removes aerosols
serving as cloud condensation nuclei (CCN) or ice nuclei
(IN). In the case of warm (liquid) and mixed-phase clouds
(T ≥ 258 K), we assume 100 % incorporation of hydrophilic
aerosols in the cloud droplets followed by efficient scaveng-
ing when liquid water is converted to precipitation by coa-
lescence or riming. We assume that 80 % of BC and 50 % of
POA are emitted as hydrophobic (Cooke et al., 1999; Park et
al., 2003), and convert them to hydrophilic in the atmosphere
with an e-folding time of 1 day which yields a good simula-
tion of BC export efficiency in continental outflow (Park et
al., 2005). In the case of cold clouds (T < 258 K), we assume
that only dust and hydrophobic BC can serve as IN and hence
be removed by scavenging (Chen et al., 1998; Andreae and
Rosenfeld, 2008). Cozic et al. (2007) find that the BC frac-
tion scavenged into cloud droplets decreases with decreasing
temperature, from 60 % at 0◦C to 10 % at< −20◦C. How-
ever, it must be recognized that the scavenging of BC by cold
clouds is highly uncertain (Karcher et al., 2007; Baumgard-
ner et al., 2008; Cozic et al., 2008; Targino et al., 2009; Stith
et al., 2011).

Precipitation is a subgrid process on the horizontal scale
of GEOS-Chem. A critical variable in the wet deposition pa-
rameterization is the areal fractionFk of a grid box at vertical
model layerk that actually experiences precipitation. Liu et
al. (2001) applied the formulation of Giorgi and Chameides
(1986) for the areal fractionF ′

k over which new precipitation
is formed:

F ′

k =
Qk

LC1
(1)
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Fig. 1. GEOS-Chem emissions of black carbon (BC) and primary
organic aerosol (POA) in April 2008. Annual regional totals are in
Table 1.

whereQk is the grid-scale formation rate of new precip-
itation (kg m−3 s−1), L is the condensed water content of
the precipitating cloud and is assumed to be constant (L =

1.0× 10−3 kg m−3) (DelGenio et al., 1996), andC1 is the
rate constant for conversion of cloud water to precipitation
(C1 = C1 min+Qk/L with C1 min = 1.0×10−4 s−1). The algo-
rithm is initiated for each grid square at the top of the tro-
pospheric column and proceeds downward, computing the
actual precipitating fractionFk in layer k (index decreasing
downward) asFk = max(F ′

k, Fk+1) to account for precipi-
tation formation overhead. In previous versions of GEOS-
Chem, Qk > 0 caused rainout to be applied to the whole
precipitation area fractionFk and washout was only applied
whenFk > 0 andQk ≤ 0 (negativeQk indicating net evap-
oration). This caused an overestimation of in-cloud scav-
enging and underestimation of below-cloud scavenging, as
Fk+1 > F ′

k should be an indication of washout taking place
over the fractional areaFk+1−F ′

k of layerk. In our present
simulation, we apply rainout in layerkto the precipitating
fraction F ′

k and washout to the additional fractional area
Fdiff = max (0, Fk+1 −F ′

k). The correction slows aerosol
scavenging as washout is generally less efficient than rain-
out.

Liu et al. (2011) found in the AM-3 model a factor of
100 increase in winter-spring Arctic BC, and better agree-
ment with observations from surface sites and from ARC-
TAS, by using a photochemically-varying timescale for BC
hydrophobic-to-hydrophilic aging (up to 1–2 weeks in win-
ter) and reducing total deposition efficiencies relative to their
original model. They found in their model that 30–50 % of
Arctic BC remained hydrophobic in winter. However, the
significant coating of BC particles indicated by aircraft ob-
servations of shell/core ratios (Kondo et al., 2011) and light
absorption (McNaughton et al., 2011) in ARCTAS suggests
that BC in the Arctic is mainly hydrophilic. In addition,
TRACE-P aircraft observations in Asian outflow in March-

April provide good constraints that the BC aging time scale
is no more than 2 days (Park et al., 2005).

Model transport of aerosol from northern mid-latitudes to
the Arctic is highly sensitive to the representation of wet de-
position (Liu et al., 2011). There are many associated un-
certainties including model precipitation and its vertical dis-
tribution, the subgrid scale of precipitation coupled to trans-
port, and the scavenging efficiencies from washout and rain-
out. The tropospheric lifetime of BC against deposition in
our simulation is 5.9 days, not significantly different from
the standard GEOS-Chem model (5–6 days), and within the
range of 5–11 days from current models (Koch et al., 2009b).
Wet deposition accounts globally for 77 % of annual BC de-
position, consistent with the AeroCom multimodel assess-
ment (78.6± 17 %) (Textor et al., 2006). The tropospheric
lifetime of 210Pb aerosol in the model is 10.4 days (Amos et
al., 2011), consistent with observational constraints (Liu et
al., 2001). With regard to the Arctic, our successful sim-
ulation of observations combined with the relatively good
constraints on emissions (see discussion below) gives some
confidence to our scavenging parameterization. Fisher et
al. (2011) previously showed that it allows a successful sim-
ulation of sulfate-ammonium aerosol in ARCTAS.

2.2 Emissions of BC and OA

Figure 1 shows the hemispheric emissions of BC and POA
(primary organic aerosol) in April 2008 in the model. Ta-
ble 1 gives regional and global annual totals for 2008. An-
thropogenic emissions (fossil fuel and biofuel combustion)
are from Bond et al. (2007) for 2000, but with doubled emis-
sions in Russia and Asia for both BC and POA to match BC
surface observations in China and in the Arctic as discussed
below. This doubling is consistent with the strong recovery
of the Russian economy since 2000 (IEA, 2010) and with the
general increase in Chinese emissions over the past decade
(Zhang et al., 2008a; Lu et al., 2010).

Open fires (not necessarily nature) are a major source of
carbonaceous aerosols. April 2008 saw exceptionally high
forest and agricultural fire activity in Russia and Kazahkstan
(hereafter referred to collectively as “Russia”) (Warneke et
al., 2009; Fisher et al., 2010) as well as typical seasonal
fire activity in Southeast Asia (including India and south-
ern China). We specify open fire emissions with the Fire
Locating and Monitoring of Burning Emissions (FLAMBE)
inventory (Reid et al., 2009), which has 1◦

× 1◦ spatial reso-
lution and hourly temporal resolution based on MODIS and
GOES satellite fire counts. The FLAMBE inventory provides
fine particle (PM2.5) emissions based on total estimated fuel
combustion, carbon fraction in the fuel, and PM2.5 emission
factors (Reid et al., 2005, 2009). We partition PM2.5 emis-
sions into BC and OA using BC/OA emission ratios from
Andreae and Merlet (2001) for different vegetation types.
Fisher et al. (2010) previously used FLAMBE to simulate
ARCTAS/ARCPAC CO observations with GEOS-Chem and
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Table 1. Global GEOS-Chem emissions of carbonaceous aerosols in 2008a.

Source Black Carbon Organic Aerosol
(Tg C a−1) (Tg C a−1)

Anthropogenicb 7.0 14
North America (172.5–17.5◦ W, 24–88◦ N) 0.41 0.56
Europe (17.5◦ W–30◦ E, 50–88◦ N & 17.5◦ W–
60◦ E, 33–50◦ N)

0.63 1.1

Russia (30–172.5◦ E, 50–88◦ N) 0.23 0.52
Asia (60–152.5◦ E, 0–50◦ N) 4.7 9.8
Rest of world 1.0 2.6

Open Firesc 11 84
North America (172.5–17.5◦ W, 24–88◦ N) 0.20 2.7
Europe (17.5◦ W–30◦ E, 33–88◦ N) 0.082 0.63
Russia (30–152.5◦ E, 33–60◦ N) 0.60 4.5
South Asia (60–152.5◦ E, 0–33◦ N) 0.77 6.1
Rest of world 9.5 70

Total 18 98

a Values are annual means. Different region definitions are used for anthropogenic and open fire sources.
b Including fossil fuel and biofuel combustion. Values are from Bond et al. (2007) but with doubling of Russian and Asian emissions (see text).
c From the FLAMBE inventory of Reid et al. (2009) but with major modifications for Russian and Southeast Asian sources as described in the text.

found that Russian and Southeast Asian emissions needed
to be reduced to 53 % and 45 %, respectively, of the origi-
nal FLAMBE values. We apply here the same reductions to
BC and OA emissions and further correct the emissions to
fit the ARCTAS data. Open fires in Russia were the domi-
nant source of OA in ARCTAS (Warneke et al., 2009, 2010),
and we find from tagged source attribution that OA emis-
sions from Russian fires must be reduced by an additional
36 % to match the ARCTAS observations. Our resulting OA
emission factor from the Russian fires is 6.8 grams carbon
per kilogram dry mass burned, consistent with the 3.3–9.7
range reported in the literature for agricultural and extrat-
ropical forest fires (Andreae and Merlet, 2001; Akagi et al.,
2011).

From there we use observations of the BC/OA concentra-
tion ratio in fire plumes to constrain the BC emission fac-
tor. Warneke et al. (2009) reported BC/OA ratios of 0.14
(agricultural fires) and 0.15 (forest fires) on a carbon basis
for Russian fire plumes sampled in ARCPAC, and we find
a similar observed ratio of 0.12± 0.03 for fire plumes sam-
pled in ARCTAS (Fig. 2). The model as specified above,
with a BC/OA emission ratio of 0.13, reproduces these ob-
served values in the fire plumes and we have no need to ad-
just them further. The resulting BC emission factor from the
Russian fires is 0.87 g kg−1 (gram carbon per kilogram dry
mass burned), at the high end of the 0.37–0.82 range reported
in the literature for agricultural and extratropical forest fires
(Andreae and Merlet, 2001; Akagi et al., 2011).

y = 0.12x + 0.03 
(r = 0.80)

OA, µg C m-3 STP

B
C

, µ
g 

C
 m

-3
 S

TP

Fig. 2. Scatterplot of BC vs. OA concentrations in fire plumes
diagnosed by [CH3CN] > 200 ppt for the ensemble of ARCTAS
DC-8 flights (1–19 April 2008). STP refers to standard conditions
of temperature and pressure (273 K, 1 atm) so that µg C m−3 STP
is a mixing ratio unit. The reduced-major-axis (RMA) regression is
shown by the solid line and the corresponding equation is given in
the inset.

Figure 3 compares annual mean surface air concentra-
tions of BC in the model in 2008 with observations from
networks in the US (2008), China (2006), and Europe
(2002–2003). Our objective is to diagnose any large model
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Fig. 3. Annual mean surface air concentrations of BC aerosol in
China, Europe, and the US. Model results for 2008 (solid con-
tours) are compared to observations (circles). Observations are
from Zhang et al. (2008a) in China for 2006, from the EMEP
network in Europe for 2002–2003 (http://tarantula.nilu.no/projects/
ccc/emepdata.html), and from the IMPROVE network in the US
for 2008 (http://vista.cira.colostate.edu/improve/Data-/IMPROVE/
AsciiData.aspx). Normalized mean bias (NMB) statistics for each
region are shown inset.

Denali
Barrow

Fig. 4. DC-8 flight tracks during the April 2008 ARCTAS cam-
paign (red lines). Long-term monitoring sites for BC at Barrow and
Denali are also indicated.

bias in these three major source regions relevant to the
Arctic. For the US we use 2008 data from the rural
IMPROVE network (http://vista.cira.colostate.edu/improve/
Data/IMPROVE/AsciiData.-aspx). For China and Europe
we do not have network observations for 2008 and there-
fore use data for other years with the assumption that in-
terannual variability is small: Zhang et al. (2008b) for ru-
ral/regional sites in China in 2006, and the BC/OC campaign
in Europe in 2002–2003 (http://tarantula.nilu.no/projects/
ccc/-emepdata.html). We diagnose for each region the nor-
malized mean bias:

NMB = 100 %×

∑
i
(Mi −Oi)/

∑
i
Oi (2)

where the sum is over the ensemble of sitesi, andMi andOi

are the modeled and observed values, respectively.
The data in Fig. 3 show normalized mean biases of−24 %

for China,−31 % for Europe, and +35 % for the US. Without
doubling the inventory from Bond et al. (2007) the bias for
China would be much larger (NMB =−61 %). Underestima-
tion in Europe is mainly due to three sites in northern Italy
and Belgium. Without these three sites the NMB would de-
crease to−0.7 %. The overestimation of BC in the US can
be explained by a 40 % decrease in observed concentrations
between 2000 (year of the Bond et al. (2007) inventory) and
2008, as shown by Leibensperger et al. (2011).

3 Sources of BC and OA in the Arctic

3.1 Constraints from aircraft data

Figure 4 shows the DC-8 flight tracks in ARCTAS. BC was
measured with an SP2 (Single Particle Soot Photometer)
instrument in the size range 0.08–0.860 µm (Kondo et al.,
2011). OA and other aerosol concentrations were measured
by an Aerosol Mass Spectrometer (AMS) in the size range
0.045–1 µm (Jimenez et al., 2003). We assume that these
measurements account for the bulk of BC and OA mass. The
AMS measures OA in units of µg m−3 and we convert this
to µg C m−3 with a scaling factor of 2.1 typical of nonurban
aerosols (Turpin and Lim, 2001; Aiken et al., 2008). The
model is sampled along the flight tracks at the same time
and location as the observations, and the aircraft data are
averaged over the GEOS-Chem grid. Observations outside
the Arctic (south of 60◦ N), in the stratosphere ([O3]/[CO]
>1.25 mol mol−1), and in fire plumes ([CH3CN] >200 ppt)
are excluded. We previously used the information from fire
plumes to constrain the BC emission factor (Sect. 2).

BC and OA were measured from the ARCPAC aircraft
concurrently with ARCTAS, but for fewer flights and a much
smaller spatial domain in the Alaskan Arctic. Fisher et
al. (2011) previously compared the GEOS-Chem sulfate-
ammonium aerosol simulation to the ensemble of ARCTAS
and ARCPAC observations, and found the ARCPAC data dif-
ficult to interpret because of the limited sampling and focus
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Fig. 5. Fine aerosol composition observed along the ARCTAS DC-
8 flight tracks (1–19 April 2008), averaged over 2-km altitude bins.
The averaging excludes data collected south of 60◦ N, in strato-
spheric air, and in biomass burning plumes (see text).

on fire plumes. We limit here our use of the ARCPAC data
to the constraints that they provide on biomass burning emis-
sion factors (Warneke et al., 2009, 2010) and BC dry deposi-
tion (Spackman et al., 2010).

Figure 5 shows the overall fine aerosol composition mea-
sured by the ARCTAS DC-8 in 2-km altitude bins, providing
context for the relative importance of BC and OA. Sea salt
and dust are excluded as only bulk measurements were made
in ARCTAS and we expect their coarse-mode fractions to be
dominant. OA and sulfate are the dominant components of
the fine aerosol. Sulfate is dominant in surface air but OA
becomes comparable in the free troposphere, because sul-
fate shows little variation with altitude while OA is strongly
peaked at 2–6 km.

Figure 6 shows scatterplots of simulated vs. observed BC
and OA concentrations during ARCTAS, and Fig. 7 shows
mean vertical profiles. The model has some success in re-
producing the variability of the individual observations, with
a correlation coefficientr = 0.65 for BC and 0.62 for OA.
There are some large underestimates in the mid-troposphere
associated with elevated CH3CN, a tracer of biomass burn-
ing, but these may reflect the inability of the model to re-
solve fine plumes not screened by the [CH3CN] <200 ppt
filter. Concentrations of BC average 53± 109 ng C m−3 in
the observations and 63± 65 ng C m−3 in the model. Con-
centrations of OA average 0.40± 0.56 µg C m−3 in the ob-
servations and 0.35± 0.37 µg C m−3 in the model.

The model successfully reproduces the mean vertical dis-
tributions of BC and OA, with peaks in the mid-troposphere.
Also shown in Fig. 7 is the model source attribution using
tagged tracers as described in Sect. 2. Since the model re-
lationship between sources and concentrations is linear, the
source contributions are additive and the sensitivity to source
magnitudes can be readily inferred from the data shown here.

We see that the mid-troposphere peaks are due to Russian
fires, and in the case of BC also to Asian anthropogenic influ-
ence. Open fires contribute 46 % of BC and 84 % of OA at 2–
6 km altitude in the model. The mid-tropospheric maximum
reflects the lifting of Russian fire and Asian pollution efflu-
ents by warm conveyor belts (WCBs) originating from the
Pacific Rim of the Asian continent (Liu et al., 2003; Stohl,
2006; Fisher et al., 2010). The strong influence of open fires
at 2-6 km is consistent with the observed strong correlations
of BC vs. CH3CN (r = 0.74) and OA vs. CH3CN (r = 0.81)
and has been reported in previous ARCTAS/ARCPAC anal-
yses (Warneke et al., 2009; Spackman et al., 2010; Warneke
et al., 2010; Kondo et al., 2011; Matsui et al., 2011).

We find that open fires are the dominant source of OA at
all altitudes in the model, but anthropogenic sources are more
important for BC and dominate near the surface (Fig. 7). We
evaluate this source attribution by using observed and sim-
ulated correlations with sulfate, an aerosol tracer of anthro-
pogenic influence. Simulated GEOS-Chem sulfate is from
Fisher et al. (2011). Figure 8 shows observed and simu-
lated scatterplots of BC and OA vs. sulfate, indicating good
agreement in the correlation coefficients and the slopes of
the regression lines at 2–6 km (mid-troposphere) and 0–1 km
(near-surface). There is significant correlation between OA
and sulfate in the mid-troposphere, consistent with the well-
known mixing of pollution and fire influences in Asian out-
flow lifted by WCBs (Bey et al., 2001) and previously doc-
umented in ARCTAS and ARCPAC (Fisher et al., 2010;
Brock et al., 2011). Figure 8 shows a population of points
at altitude> 6 km with extremely high sulfate concentrations
(>3 µg m−3 STP) and low BC and OA concentrations, corre-
sponding to a plume transported from East Asia as indicated
by back-trajectories. The strong enrichment of sulfate rela-
tive to carbonaceous aerosols in that plume is consistent with
Asian pollution having experienced wet scavenging, as pre-
viously shown by van Donkelaar et al. (2008) and Dunlea et
al. (2009) in observations from the INTEX-B aircraft cam-
paign.

The contribution of open fire emissions in the model
decreases from the mid-troposphere to near-surface air
(<1 km), where it accounts for 20 % of BC and 60 % of
OA. The concentration ratios relative to sulfate are also much
lower in near-surface air than in the mid-troposphere, both in
the model and in observations (Fig. 8). This is consistent
with Fisher et al. (2011), who found a major contribution to
Arctic boundary layer sulfate from boundary layer transport
of European and North American pollution, in contrast to
the mid-troposphere where Asian pollution dominates. This
boundary layer anthropogenic influence is far more impor-
tant for BC than for OA because of the much higher BC/OA
emission ratio from anthropogenic sources than from open
fires (Table 1). Consequently, the observed ratio of BC vs.
OA increases from 0.17 in the mid-troposphere to 0.26 near
the surface (Fig. 9), and this is also well captured in the
model.
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Fig. 6. Scatterplots of simulated vs. observed BC and OA concentrations along the DC-8 flight tracks during ARCTAS (1–19 April 2008).
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Fig. 7. Mean vertical profiles of BC and OA concentrations along the DC-8 flight tracks in ARCTAS (1–19 April 2008), averaged over
1-km altitude bins. The top panels compare observations to GEOS-Chem and separate the model contributions from anthropogenic and open
fire sources. The bottom panel further separates model BC contributions by source regions. Anthropogenic sources include fossil fuel and
biofuel combustion.

Our estimation of the open fire contribution to BC along
the ARCTAS DC-8 flight tracks agrees with the value of 33–
41 % reported by McNaughton et al. (2011) using CH3CN
and the OA/sulfate ratio to classify the data. Matsui et

al. (2011) attributed most of the BC measured in ARCTAS
to Russian fire emissions using CH3CN and dichloromethane
(CH2Cl2) to classify the data, but their analysis focused on
plumes and ignored background air.
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Broader examination of model results over the scale of the
Arctic polar cap (north of 60◦ N) in April 2008 indicates that
open fire emissions contribute 50 % of total BC in the Arctic
tropospheric column and 81 % of total OA. Fire influences
are the strongest in the Eurasian Arctic (not sampled by the
aircraft). Asian pollution dominates the source of anthro-
pogenic BC in the Arctic tropospheric column, but less so
in surface air. Our model Asian contribution to Arctic BC
in spring is higher than previous studies (Koch and Hansen,
2005; Shindell et al., 2008; Tilmes et al., 2011). This reflects
our higher Asian emission inventory, constrained by obser-
vations at Chinese sites as discussed in Sect. 2.

3.2 Surface observations

We now turn to surface observations in Jan–May 2008 to pro-
vide broader seasonal context. Figure 10 compares model re-
sults with monthly average surface concentrations observed
in Alaska at Denali (low Arctic) and Barrow (high Arctic) in
2007–2009 (locations shown in Fig. 4). Model contributions
from different sources are shown. Observations at Denali
are from the IMPROVE network (http://vista.cira.colostate.

edu/-improve/Data/IMPROVE/AsciiData.aspx) using a ther-
mal/optical reflectance method. Observations at Barrow are
from the NOAA Global Monitoring Division (http://www.
esrl.noaa.gov/gmd/aero/net/), reported as aerosol light ab-
sorption coefficients from a particle soot absorption pho-
tometer. We use a mass absorption efficiency of 9.5 m2 g−1

to convert the absorption coefficients to BC mass concen-
trations based on ARCTAS data (McNaughton et al., 2011).
OA observations at Barrow are from P. Shaw et al. (2010),
who reported seasonal mean concentrations for Mar 2008–
Mar 2009.

We find that the BC and OA observations at the surface
sites in April 2008 are roughly consistent with the mean near-
surface ARCTAS data (Fig. 7), but are more affected by Rus-
sian fires. The fire influence at Denali is larger than that at
Barrow. Observations in April 2008 were anomalously high
relative to the 2007–2009 April mean (thin lines in Fig. 10),
which reflects the anomalously large Russian fires (Fisher et
al., 2010).

Observations of BC at Barrow show higher values in win-
ter (Jan–Mar) than spring (Apr–May), even in 2008. In
contrast, Denali shows higher values in spring even in the
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2007–2009 mean. The model fails to reproduce the seasonal
variation at Denali, apparently because it overestimates lo-
cal pollution influence from nearby Anchorage in winter. It
is more successful at Barrow, although this is contingent on
doubling of the Russian anthropogenic source from the Bond
et al. (2007) inventory as described above. The winter maxi-
mum at Barrow is explained in the model by the Russian an-
thropogenic source, transported to the North American Arc-
tic in the boundary layer around the Siberian High with little
dilution and little precipitation. This Russian source influ-
ence declines sharply in spring due to vertical mixing and
to the weakening of the Siberian High. Sharma et al. (2006)
found similar source attribution for BC at Barrow using back-
trajectory analysis, and Fisher et al. (2011) found similar re-
sults for sulfate at Barrow using GEOS-Chem.

Observed OA at Denali shows similar winter-spring sea-
sonality as BC. Our model reproduces this seasonality with-
out the spurious local influence from Anchorage seen for BC
(the OA/BC emission ratio from Anchorage in the Bond et
al. (2007) inventory is 50 % lower than the anthropogenic
mean). Observations of OA at Barrow show little seasonal
variation between winter and spring, which is consistent with
the model as the decline in the Russian anthropogenic source
from winter to spring is compensated by the open fire influ-
ence. Both at Denali and at Barrow, we find that we can
largely explain the wintertime OA on the basis of anthro-
pogenic sources and the springtime OA on the basis of open
fires. The source attribution in spring is consistent with the
work of P. Shaw et al. (2010) and Frossard et al. (2011), who
identified a dominant combustion source for OA at Barrow
on the basis of correlations with combustion tracers. Shaw et
al. (2010) attributed most OA at Barrow in winter to oceanic
emissions but we find otherwise.

4 BC deposition in the Arctic and implications for
radiative forcing

BC transported to the Arctic from mid-latitudes can be ei-
ther removed by deposition or eventually ventilated out of
the Arctic. We find in model sensitivity simulations that
BC transported to the Arctic below 2 km is mostly deposited
within the Arctic, whereas BC transported to the Arctic at
higher altitudes is mostly ventilated out. Wet processes in our
model account for 85–91 % of total BC deposition to the Arc-
tic in winter-spring. This is higher than in the previous model
studies of Huang et al. (2010) and Liu et al. (2011), but con-
sistent with the studies of Flanner et al. (2007). Spackman
et al. (2010) inferred a dry deposition flux for BC of 100–
5300 ng m−2 day−1 over snow/ice during ARCPAC on the
basis of observed BC depletion in the boundary layer. Our
computed dry deposition flux in the Western Arctic (mostly
covered by snow/ice) is about 1500 ng m−2 day−1 in spring,
consistent with that estimate.

Figure 11 shows the spatial distribution of model BC to-
tal deposition in winter (Jan–Mar) and spring (Apr–May)
2008, separately for open fire and anthropogenic contribu-
tions. Maximum deposition is in the Eurasian sector due to
Russian and European anthropogenic sources, augmented in
spring by Russian fires. The fires double BC deposition to the
Arctic in spring relative to winter. The Asian anthropogenic
contribution to BC deposition is small in winter compared to
European and Russian sources but becomes comparable to
these sources in the spring.

While ARCTAS data only provide information for the
North American Arctic, larger BC deposition in the Eurasian
sector is consistent with the work of Doherty et al. (2010),
who reported snow BC concentrations from a network of
Russian and North American Arctic sites in Mar–May 2007–
2009. We compared these observations (http://www.atmos.
washington.edu/sootinsnow/) to model values for the corre-
sponding years, using the GFEDv2 fire inventory for 2007
(van der Werf et al., 2006) and the FLAMBE inventory with
above scaling factors for 2009. Figure 12 shows model re-
sults for the BC content of snow in winter (Jan–Mar) and
spring (Apr–May) 2007–2009, as calculated from the ra-
tio of BC to water deposition fluxes, and Fig. 13 com-
pares to the Doherty et al. (2010) observations for indi-
vidual sites and months. The observations show mean
values of 11± 5 ng g−1 at the North American sites and
23± 16 ng g−1 at the Russian sites, and the corresponding
model values for these sites and months are 11± 3 ng g−1

and 31± 11 ng g−1. Excluding the outlier with observed
value of 30 ng g−1 in 2007, we find a good model-observed
correlation at North American sites withr = 0.60. Russian
data are too sparse to evaluate a correlation. Spackman et
al. (2010) extrapolated the BC dry deposition fluxes inferred
from their aircraft data to BC content in snow and found
consistency with the data of Doherty et al. (2010), in appar-
ent contradiction with our model results where wet deposi-
tion dominates. However, the snowfall used by Spackman et
al. (2010) in their calculation is only 20 % of that used in our
model from the GEOS-5 data.

MODIS fire counts show that spring 2007 had lower-than-
average Russian fires while 2009 was near average, offer-
ing a contrast to spring 2008 which had anomalously high
Russian fire activity (http://disc.sci.gsfc.nasa.gov/giovanni/).
The total model BC deposition to the Arctic in April–May is
16 Gg month−1 for 2007 (including 13 % from open fires),
41 Gg month−1 for 2008 (61 %), and 34 Gg month−1 for
2009 (46 %). Deposition in Jan-Mar has little interannual
variability (14–19 Gg month−1). The relative contribution
of dry deposition to total deposition is 15 % in winter and
9 % in spring, with little interannual variability. It is smallest
over the Eurasian Arctic in spring where the deposition flux
is highest.

Model source attribution shows that the mean contribution
of open fires to the BC content in Arctic snow is 10 % in win-
ter and 60 % in spring 2008 (40 % for springs 2007–2009).
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Fig. 11. Contributions of open fire and anthropogenic (fuel combustion) sources to the BC deposition flux in GEOS-Chem for winter and
spring 2008.

Hegg et al. (2009, 2010) and Doherty et al. (2010) previously
reported a dominant influence from biomass burning in their
BC snow content data, based on absorption ?ngstrom expo-
nents and correlation with biomass burning tracers. Part of
the discrepancy could reflect biofuel combustion, which ac-
counts in the model for 38 % of annual anthropogenic emis-
sions in Asia and 25 % in Russia, and would be highest in
winter-spring due to residential heating. In addition, mixing
of anthropogenic and fire influences in Asian outflow dis-
cussed above complicates source attribution in the observa-
tions; this mixing is apparent in the Hegg et al. (2010) anal-
ysis as an association of sulfate with biomass burning influ-
ence.

Figure 14 shows model results for the decreases in snow
albedo in winter (Jan–Mar) and spring (Apr–May) 2008 due
to BC deposition to snow. We assume a constant snow grain
radius of 100 µm (McConnell et al., 2007) with no significant
aging, and estimate the effect of BC on snow albedo based
on Fig. 2 in Warren and Wiscombe (1995). The resulting
decrease in snow albedo averaged over the Arctic is 0.4 %
in winter and 0.8 % in spring 2008 (0.6 % for spring 2007–

2009), lower than previous estimates of 1.1–4.7 % (Park et
al., 2005; Flanner et al., 2007; Koch et al., 2009a). By con-
volving this result with the GEOS-5 incoming solar radia-
tion at the surface we deduce a surface radiative forcing over
the Arctic (north of 60◦ N) from deposited BC of 0.1 W m−2

in winter and 1.7 W m−2 in spring 2008 (1.2 W m−2 for
spring 2007–2009, including 0.6 W m−2 from anthropogenic
sources only). A previous model calculation by Flanner et
al. (2007) reported a surface radiative forcing of 0.02 W m−2

in winter and 0.53 W m−2 in spring due to anthropogenic BC
over the same domain, similar to our values.

5 Comparison to previous global models

Simulation of BC concentrations over the Arctic is consid-
ered a difficult problem for global models. Multi-model
community (AerocCom and HTAP) intercomparisons show
order-of magnitude differences between models and either
negative (Shindell et al., 2008; Koch et al., 2009b) or posi-
tive bias (Schwarz et al., 2010) compared with observations.
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Fig. 14.Model decreases in snow albedo due to BC deposition in the Arctic (>60◦ N) in winter and spring 2008. Snow-free areas are shown
in gray.

These differences between models reflect diversity in both
emissions and scavenging efficiency. Considering our gen-
eral success in reproducing the ensemble of BC observations
over the Arctic, it is useful to reflect on what this success
implies for modeling BC in that region.

It should be noted that the community intercomparisons
cited above involved many models that were not previously
evaluated in the Arctic. The order-of-magnitude differences
between models may be explained by inadequate represen-
tations of wet scavenging, which is particularly important
for modeling BC in the Arctic because of multiple e-folding
loss during transport from northern mid-latitudes (Liu et al.,
2011). Individual model studies targeting the Arctic demon-
strate much better comparisons to BC observations (Koch
and Hansen, 2005; Koch et al., 2009b; Huang et al., 2010;
Liu et al., 2011), with our evaluation being the most extensive
by encompassing surface air, aircraft, and snow observations.
Huang et al. (2010) show good comparisons to observed BC
concentrations in surface air while Koch and Hansen (2005)
and Liu et al. (2011) reproduce the seasonality but still un-
derestimate the winter-spring maximum by a factor of 2–3.
Comparisons to ARCTAS vertical profiles show slight under-
estimation in Koch et al. (2009b) and no significant bias in
Liu et al. (2011).

Table 2 lists the BC sources and global lifetime used by
the above models in comparison to ours. Our global an-
thropogenic emissions are close to Huang et al. (2010) but
about 50 % higher than others, reflecting the major increase
in Asian emissions since 2000. Our fire emissions are the
highest, though this is mainly weighted by the tropics (Ta-

ble 1) and has little influence on the Arctic. Our Russian fire
emissions are high (0.6 Tg C a−1, as compared to 0.3 Tg a−1

in Koch and Hansen (2005) and Huang et al. (2010)), but this
reflects the anomalous 2008 fire season (Fisher et al., 2010).
Koch and Hansen (2005) implied that their low model bias
might be explained by underestimate of Asian anthropogenic
emissions.

Our global mean lifetime of BC against deposition (5.9
days) is 20–40 % shorter than in the other models of Table 2,
though within the 5–11 days of the ensemble of models in-
tercompared by Koch et al. (2009b). The global lifetime is of
limited relevance to simulation of the Arctic in winter-spring,
where scavenging is principally from cold clouds and snow.
There the different models exhibit complicated differences
in their scavenging parameterizations. In our model, scav-
enging from cold clouds is restricted to hydrophobic BC; it
is efficient in source regions but inefficient in the Arctic be-
cause BC becomes hydrophilic after an aging time of 1 day.
The other models in Table 2 scavenge hydrophilic BC from
cold clouds but not hydrophobic BC. Liu et al. (2011) in-
creased the atmospheric lifetime of BC in their simulation
for the Arctic by making the conversion from hydrophobic to
hydrophilic contingent on OH levels (as opposed to a fixed
1-day time scale in our model and most others). Below-cloud
scavenging from large-scale precipitation removes both hy-
drophobic and hydrophilic BC in most models in Table 2 ex-
cept Huang et al. (2010), which does not scavenge hydropho-
bic BC at all. In our model, below-cloud scavenging by snow
is much more efficient than by rain because of the larger
cross sectional area of snow crystals vs. raindrops. Huang
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Table 2. Global model representations of atmospheric BC.

Reference Model Global source, Tg C a−1 Lifetimeb,

Anthropogenica Open fires days

This work GEOS-Chem 7.0 11 5.9
Liu et al. (2011) AM3 5.1 2.6 9.5
Huang et al. (2010) GEM-AQ 6.0 4.9 9.2
Koch et al. (2009b) GISS 4.4 2.8 9.2
Koch and Hansen (2005) GISS 4.7 6.0 7.3

a Including fossil and biofuel combustion
b Global lifetime in the troposphere against deposition

et al. (2010) and Liu et al. (2011) also include higher below-
cloud scavenging efficiency from snow than from rain.

Although dry deposition is a minor contributor to atmo-
spheric removal of Arctic BC, it can significantly affect sur-
face air concentrations. Of most relevance is the deposition
to snow/ice. The standard GEOS-Chem model using the
resistance-in-series parameterization of Wesely (1989) has a
mean dry deposition velocity over snow/ice of 0.08 cm s−1,
which would cause underestimate of observed Arctic sur-
face air concentrations for BC and also sulfate (Fisher et
al., 2011). In our work and that of Fisher et al. (2011),
the dry deposition velocity of BC over snow/ice is fixed at
0.03 cm s−1, based on the observations of Nilsson and Ran-
nik (2001) and Held et al. (2011), and this corrects the under-
estimate. Liu et al. (2011) used a value of 0.04–0.07 cm s−1

over snow/ice. The other studies in Table 2 used standard
resistance-in-series parameterizations but did not report their
dry deposition velocities.

6 Conclusions

We used the GEOS-Chem chemical transport model (CTM)
to interpret aircraft observations of black carbon (BC) and
organic aerosol (OA) from the NASA ARCTAS campaign
over the North American Arctic in April 2008, as well as
longer-term observations of BC concentrations in surface air
and in snow. Our focus was to quantify the contributions of
different source types and source regions to Arctic BC and
OA concentrations in winter-spring, the role of deposition
processes, the resulting source attribution for BC in snow,
and the implications for radiative forcing.

Our GEOS-Chem simulation includes an improved rep-
resentation of aerosol scavenging by cold clouds and by
snow, anthropogenic (fossil fuel and biofuel) emissions of
BC and OA from the Bond et al. (2007) inventory for 2000,
and open fire emissions from the FLAMBE inventory of
Reid et al. (2009) with hourly resolution. We evaluated BC
sources from the northern mid-latitude continents with data

from observation networks. We find that Russian and Asian
anthropogenic emissions have to be doubled from Bond et
al. (2007) to improve agreement with BC observations, as
might be expected from increasing fuel use in these regions
since 2000. Unusually large fires occurred in Russia in
April 2008. FLAMBE estimates of biomass burned for these
fires had to be decreased as previously shown by Fisher et
al. (2010) from ARCTAS and satellite CO data. We find that
BC and OA fire emission factors of 0.87 and 6.8 g carbon per
kg dry mass burned, respectively, give a good simulation of
observed Russian fire plumes.

The resulting model provides a good fit to the mean
observed concentrations and vertical gradients of BC and
OA along the ARCTAS flight tracks. Considering that the
sources in the model are independently constrained by com-
parisons to observations over northern mid-latitude conti-
nents and in fire plumes, the successful simulation of the
ARCTAS data provides some support for the model repre-
sentation of aerosol deposition. Open fires account for most
of OA in the model while anthropogenic emissions are more
important for BC. Model and observations show strong peaks
in the mid-troposphere for both BC and OA, reflecting the
transport of Russian fire and Asian anthropogenic effluents
lifted by warm conveyor belts (WCBs). Open fires con-
tribute 46 % of BC and 84 % of OA in the mid-troposphere
(2–6 km) in the model. Near the surface (<1 km), by con-
trast, fires contribute only 20 % of BC and 60 % of OA. An-
thropogenic BC concentrations in the mid-troposphere are
mostly of Asian origin, but in surface air we find compa-
rable contributions from North America, Europe and Rus-
sia. These model source attributions are consistent with ob-
served correlations of BC and OA with acetonitrile (a tracer
of biomass burning) and with comparisons of simulated and
observed correlations of BC and OA vs. sulfate.

Expanding the model results to the scale of the Arctic po-
lar cap in April 2008 indicates that open fire emissions con-
tribute 50 % of total BC in the Arctic tropospheric column
and 81 % of total OA. We find the strongest fire influences
in the Eurasian Arctic. Our relatively higher model Asian
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contribution to Arctic BC in spring compared with previ-
ous studies (Koch and Hansen, 2005; Shindell et al., 2008;
Tilmes et al., 2011) reflects our higher Asian emission inven-
tory, constrained by observations at Chinese sites.

We used surface air observations of BC and OA at two
Alaskan sites (Denali and Barrow) in Jan–May 2007–2009
to place the aircraft data in a broader seasonal context. The
Denali site shows an increase of BC from winter to spring
due to Russian fire and Asian pollution influences. The sea-
sonality is reversed at Barrow with a winter maximum that
we attribute to transport from Russia. OA concentrations at
Denali and Barrow are well simulated by the model, with
similar sources as for BC but with stronger impact of fire
emissions in spring.

Spring 2008 was anomalously affected by Russian fires.
We conducted simulations for Jan–May 2007–2009 to obtain
an interannual perspective and to evaluate the model with a
pan-Arctic network of observations of BC snow content (Do-
herty et al., 2010). We find in the model that the total BC
deposition flux to the Arctic in 2007–2009 averages 17 (14–
19) Gg month−1 in Jan-Mar and 30 (16–41) Gg month−1 in
Apr-May, where the range indicates the interannual variabil-
ity. Higher deposition fluxes in spring are due to fires. The
BC content of snow is highest in the Eurasian Arctic, consis-
tent with the Doherty et al. (2010) data.

Open fires in the model account on average for 10 % of
BC content in Arctic snow in Jan–Mar and 40 % in Apr–
May 2007–2009. Hegg et al. (2009, 2010) and Doherty et
al. (2010) previously inferred a dominant biomass burning
influence at most of their Arctic sites on the basis of cor-
relations with tracers and absorption ´Ångstrom exponents.
Some of that difference can be reconciled by the biofuel
source of BC, which they would diagnose as biomass burn-
ing but must be viewed as anthropogenic. In addition, the
well-known mixing of anthropogenic and fire influences in
Asian outflow could result in anthropogenic influences being
correlated with biomass burning tracers.

We estimate decreases in snow albedo due to BC depo-
sition in 2007-2009 of 0.4 % in winter and 0.6 % in spring.
The resulting mean surface radiative forcing over the Arctic
in spring is 1.2 W m−2 (including open fires) and 0.6 W m−2

(anthropogenic only). This is consistent with the anthro-
pogenic value of 0.53 W m−2 previously reported by Flanner
et al. (2007) for the same region.
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